mirror of
https://github.com/ckaczor/azuredatastudio.git
synced 2026-02-14 12:08:36 -05:00
ML - Fixed script formatting for prediction (#11767)
* Fixed script formatting for prediction
This commit is contained in:
@@ -64,13 +64,13 @@ export class ModelPythonClient {
|
||||
'float', 'uint8', 'int8', 'uint16', 'int16', 'int32', 'int64', 'string', 'bool', 'double',
|
||||
'uint32', 'uint64', 'complex64', 'complex128', 'bfloat16']`,
|
||||
`type_map = {
|
||||
onnx.TensorProto.DataType.FLOAT: 'real',
|
||||
onnx.TensorProto.DataType.UINT8: 'tinyint',
|
||||
onnx.TensorProto.DataType.INT16: 'smallint',
|
||||
onnx.TensorProto.DataType.INT32: 'int',
|
||||
onnx.TensorProto.DataType.INT64: 'bigint',
|
||||
onnx.TensorProto.DataType.STRING: 'varchar(MAX)',
|
||||
onnx.TensorProto.DataType.DOUBLE: 'float'}`,
|
||||
onnx.TensorProto.DataType.FLOAT: 'REAL',
|
||||
onnx.TensorProto.DataType.UINT8: 'TINYINT',
|
||||
onnx.TensorProto.DataType.INT16: 'SMALLINT',
|
||||
onnx.TensorProto.DataType.INT32: 'INT',
|
||||
onnx.TensorProto.DataType.INT64: 'BIGINT',
|
||||
onnx.TensorProto.DataType.STRING: 'VARCHAR(MAX)',
|
||||
onnx.TensorProto.DataType.DOUBLE: 'FLOAT'}`,
|
||||
`parameters = {
|
||||
"inputs": [],
|
||||
"outputs": []
|
||||
|
||||
@@ -9,7 +9,8 @@ import { ApiWrapper } from '../common/apiWrapper';
|
||||
import { QueryRunner } from '../common/queryRunner';
|
||||
import * as utils from '../common/utils';
|
||||
import { ImportedModel } from '../modelManagement/interfaces';
|
||||
import { PredictParameters, PredictColumn, DatabaseTable, TableColumn } from '../prediction/interfaces';
|
||||
import { PredictParameters, DatabaseTable, TableColumn } from '../prediction/interfaces';
|
||||
import * as queries from './queries';
|
||||
|
||||
/**
|
||||
* Service to make prediction
|
||||
@@ -67,7 +68,7 @@ export class PredictService {
|
||||
let connection = await this.getCurrentConnection();
|
||||
let query = '';
|
||||
if (registeredModel && registeredModel.id) {
|
||||
query = this.getPredictScriptWithModelId(
|
||||
query = queries.getPredictScriptWithModelId(
|
||||
registeredModel.id,
|
||||
predictParams.inputColumns || [],
|
||||
predictParams.outputColumns || [],
|
||||
@@ -75,7 +76,7 @@ export class PredictService {
|
||||
registeredModel.table);
|
||||
} else if (filePath) {
|
||||
let modelBytes = await utils.readFileInHex(filePath || '');
|
||||
query = this.getPredictScriptWithModelBytes(modelBytes, predictParams.inputColumns || [],
|
||||
query = queries.getPredictScriptWithModelBytes(modelBytes, predictParams.inputColumns || [],
|
||||
predictParams.outputColumns || [],
|
||||
predictParams);
|
||||
}
|
||||
@@ -97,7 +98,7 @@ export class PredictService {
|
||||
let connection = await this.getCurrentConnection();
|
||||
let list: DatabaseTable[] = [];
|
||||
if (connection) {
|
||||
let query = utils.getScriptWithDBChange(connection.databaseName, databaseName, this.getTablesScript(databaseName));
|
||||
let query = utils.getScriptWithDBChange(connection.databaseName, databaseName, queries.getTablesScript(databaseName));
|
||||
let result = await this._queryRunner.safeRunQuery(connection, query);
|
||||
if (result && result.rows && result.rows.length > 0) {
|
||||
result.rows.forEach(row => {
|
||||
@@ -120,13 +121,13 @@ export class PredictService {
|
||||
let connection = await this.getCurrentConnection();
|
||||
let list: TableColumn[] = [];
|
||||
if (connection && databaseTable.databaseName) {
|
||||
const query = utils.getScriptWithDBChange(connection.databaseName, databaseTable.databaseName, this.getTableColumnsScript(databaseTable));
|
||||
const query = utils.getScriptWithDBChange(connection.databaseName, databaseTable.databaseName, queries.getTableColumnsScript(databaseTable));
|
||||
let result = await this._queryRunner.safeRunQuery(connection, query);
|
||||
if (result && result.rows && result.rows.length > 0) {
|
||||
result.rows.forEach(row => {
|
||||
list.push({
|
||||
columnName: row[0].displayValue,
|
||||
dataType: row[1].displayValue
|
||||
dataType: row[1].displayValue.toLocaleUpperCase()
|
||||
});
|
||||
});
|
||||
}
|
||||
@@ -137,112 +138,5 @@ export class PredictService {
|
||||
private async getCurrentConnection(): Promise<azdata.connection.ConnectionProfile> {
|
||||
return await this._apiWrapper.getCurrentConnection();
|
||||
}
|
||||
|
||||
private getTableColumnsScript(databaseTable: DatabaseTable): string {
|
||||
return `
|
||||
SELECT COLUMN_NAME,DATA_TYPE
|
||||
FROM INFORMATION_SCHEMA.COLUMNS
|
||||
WHERE TABLE_NAME='${utils.doubleEscapeSingleQuotes(databaseTable.tableName)}'
|
||||
AND TABLE_SCHEMA='${utils.doubleEscapeSingleQuotes(databaseTable.schema)}'
|
||||
AND TABLE_CATALOG='${utils.doubleEscapeSingleQuotes(databaseTable.databaseName)}'
|
||||
`;
|
||||
}
|
||||
|
||||
private getTablesScript(databaseName: string): string {
|
||||
return `
|
||||
SELECT TABLE_NAME,TABLE_SCHEMA
|
||||
FROM INFORMATION_SCHEMA.TABLES
|
||||
WHERE TABLE_TYPE = 'BASE TABLE' AND TABLE_CATALOG='${utils.doubleEscapeSingleQuotes(databaseName)}'
|
||||
`;
|
||||
}
|
||||
|
||||
private getPredictScriptWithModelId(
|
||||
modelId: number,
|
||||
columns: PredictColumn[],
|
||||
outputColumns: PredictColumn[],
|
||||
sourceTable: DatabaseTable,
|
||||
importTable: DatabaseTable): string {
|
||||
const threePartTableName = utils.getRegisteredModelsThreePartsName(importTable.databaseName || '', importTable.tableName || '', importTable.schema || '');
|
||||
return `
|
||||
DECLARE @model VARBINARY(max) = (
|
||||
SELECT model
|
||||
FROM ${threePartTableName}
|
||||
WHERE model_id = ${modelId}
|
||||
);
|
||||
WITH predict_input
|
||||
AS (
|
||||
SELECT TOP 1000
|
||||
${this.getInputColumnNames(columns, 'pi')}
|
||||
FROM [${utils.doubleEscapeSingleBrackets(sourceTable.databaseName)}].[${sourceTable.schema}].[${utils.doubleEscapeSingleBrackets(sourceTable.tableName)}] as pi
|
||||
)
|
||||
SELECT
|
||||
${this.getPredictColumnNames(columns, 'predict_input')},
|
||||
${this.getPredictInputColumnNames(outputColumns, 'p')}
|
||||
FROM PREDICT(MODEL = @model, DATA = predict_input, runtime=onnx)
|
||||
WITH (
|
||||
${this.getOutputParameters(outputColumns)}
|
||||
) AS p
|
||||
`;
|
||||
}
|
||||
|
||||
private getPredictScriptWithModelBytes(
|
||||
modelBytes: string,
|
||||
columns: PredictColumn[],
|
||||
outputColumns: PredictColumn[],
|
||||
databaseNameTable: DatabaseTable): string {
|
||||
return `
|
||||
WITH predict_input
|
||||
AS (
|
||||
SELECT TOP 1000
|
||||
${this.getInputColumnNames(columns, 'pi')}
|
||||
FROM [${utils.doubleEscapeSingleBrackets(databaseNameTable.databaseName)}].[${databaseNameTable.schema}].[${utils.doubleEscapeSingleBrackets(databaseNameTable.tableName)}] as pi
|
||||
)
|
||||
SELECT
|
||||
${this.getPredictColumnNames(columns, 'predict_input')},
|
||||
${this.getPredictInputColumnNames(outputColumns, 'p')}
|
||||
FROM PREDICT(MODEL = ${modelBytes}, DATA = predict_input, runtime=onnx)
|
||||
WITH (
|
||||
${this.getOutputParameters(outputColumns)}
|
||||
) AS p
|
||||
`;
|
||||
}
|
||||
|
||||
private getEscapedColumnName(tableName: string, columnName: string): string {
|
||||
return `[${utils.doubleEscapeSingleBrackets(tableName)}].[${utils.doubleEscapeSingleBrackets(columnName)}]`;
|
||||
}
|
||||
private getInputColumnNames(columns: PredictColumn[], tableName: string) {
|
||||
|
||||
return columns.map(c => {
|
||||
const column = this.getEscapedColumnName(tableName, c.columnName);
|
||||
let columnName = c.dataType !== c.paramType ? `cast(${column} as ${c.paramType})`
|
||||
: `${column}`;
|
||||
return `${columnName} AS ${c.paramName}`;
|
||||
}).join(',\n');
|
||||
}
|
||||
|
||||
private getPredictInputColumnNames(columns: PredictColumn[], tableName: string) {
|
||||
return columns.map(c => {
|
||||
return this.getColumnName(tableName, c.paramName || '', c.columnName);
|
||||
}).join(',\n');
|
||||
}
|
||||
|
||||
private getColumnName(tableName: string, columnName: string, displayName: string) {
|
||||
const column = this.getEscapedColumnName(tableName, columnName);
|
||||
return columnName && columnName !== displayName ?
|
||||
`${column} AS [${utils.doubleEscapeSingleBrackets(displayName)}]` : column;
|
||||
}
|
||||
|
||||
private getPredictColumnNames(columns: PredictColumn[], tableName: string) {
|
||||
return columns.map(c => {
|
||||
return c.paramName ? `${this.getEscapedColumnName(tableName, c.paramName)}`
|
||||
: `${this.getEscapedColumnName(tableName, c.columnName)}`;
|
||||
}).join(',\n');
|
||||
}
|
||||
|
||||
private getOutputParameters(columns: PredictColumn[]) {
|
||||
return columns.map(c => {
|
||||
return `${c.paramName} ${c.dataType}`;
|
||||
}).join(',\n');
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
114
extensions/machine-learning/src/prediction/queries.ts
Normal file
114
extensions/machine-learning/src/prediction/queries.ts
Normal file
@@ -0,0 +1,114 @@
|
||||
/*---------------------------------------------------------------------------------------------
|
||||
* Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
* Licensed under the Source EULA. See License.txt in the project root for license information.
|
||||
*--------------------------------------------------------------------------------------------*/
|
||||
|
||||
import * as utils from '../common/utils';
|
||||
import { PredictColumn, DatabaseTable } from './interfaces';
|
||||
|
||||
export function getTableColumnsScript(databaseTable: DatabaseTable): string {
|
||||
return `
|
||||
SELECT COLUMN_NAME,DATA_TYPE
|
||||
FROM INFORMATION_SCHEMA.COLUMNS
|
||||
WHERE TABLE_NAME='${utils.doubleEscapeSingleQuotes(databaseTable.tableName)}'
|
||||
AND TABLE_SCHEMA='${utils.doubleEscapeSingleQuotes(databaseTable.schema)}'
|
||||
AND TABLE_CATALOG='${utils.doubleEscapeSingleQuotes(databaseTable.databaseName)}'
|
||||
`;
|
||||
}
|
||||
|
||||
export function getTablesScript(databaseName: string): string {
|
||||
return `
|
||||
SELECT TABLE_NAME,TABLE_SCHEMA
|
||||
FROM INFORMATION_SCHEMA.TABLES
|
||||
WHERE TABLE_TYPE = 'BASE TABLE' AND TABLE_CATALOG='${utils.doubleEscapeSingleQuotes(databaseName)}'
|
||||
`;
|
||||
}
|
||||
|
||||
export function getPredictScriptWithModelId(
|
||||
modelId: number,
|
||||
columns: PredictColumn[],
|
||||
outputColumns: PredictColumn[],
|
||||
sourceTable: DatabaseTable,
|
||||
importTable: DatabaseTable): string {
|
||||
const threePartTableName = utils.getRegisteredModelsThreePartsName(importTable.databaseName || '', importTable.tableName || '', importTable.schema || '');
|
||||
return `
|
||||
DECLARE @model VARBINARY(max) = (
|
||||
SELECT model
|
||||
FROM ${threePartTableName}
|
||||
WHERE model_id = ${modelId}
|
||||
);
|
||||
WITH predict_input
|
||||
AS (
|
||||
SELECT TOP 1000
|
||||
${getInputColumnNames(columns, 'pi')}
|
||||
FROM [${utils.doubleEscapeSingleBrackets(sourceTable.databaseName)}].[${sourceTable.schema}].[${utils.doubleEscapeSingleBrackets(sourceTable.tableName)}] AS pi
|
||||
)
|
||||
SELECT
|
||||
${getPredictColumnNames(columns, 'predict_input')},
|
||||
${getPredictInputColumnNames(outputColumns, 'p')}
|
||||
FROM PREDICT(MODEL = @model, DATA = predict_input, runtime=onnx)
|
||||
WITH (
|
||||
${getOutputParameters(outputColumns)}
|
||||
) AS p
|
||||
`;
|
||||
}
|
||||
|
||||
export function getPredictScriptWithModelBytes(
|
||||
modelBytes: string,
|
||||
columns: PredictColumn[],
|
||||
outputColumns: PredictColumn[],
|
||||
databaseNameTable: DatabaseTable): string {
|
||||
return `
|
||||
WITH predict_input
|
||||
AS (
|
||||
SELECT TOP 1000
|
||||
${getInputColumnNames(columns, 'pi')}
|
||||
FROM [${utils.doubleEscapeSingleBrackets(databaseNameTable.databaseName)}].[${databaseNameTable.schema}].[${utils.doubleEscapeSingleBrackets(databaseNameTable.tableName)}] AS pi
|
||||
)
|
||||
SELECT
|
||||
${getPredictColumnNames(columns, 'predict_input')},
|
||||
${getPredictInputColumnNames(outputColumns, 'p')}
|
||||
FROM PREDICT(MODEL = ${modelBytes}, DATA = predict_input, runtime=onnx)
|
||||
WITH (
|
||||
${getOutputParameters(outputColumns)}
|
||||
) AS p
|
||||
`;
|
||||
}
|
||||
|
||||
export function getEscapedColumnName(tableName: string, columnName: string): string {
|
||||
return `[${utils.doubleEscapeSingleBrackets(tableName)}].[${utils.doubleEscapeSingleBrackets(columnName)}]`;
|
||||
}
|
||||
export function getInputColumnNames(columns: PredictColumn[], tableName: string) {
|
||||
|
||||
return columns.map(c => {
|
||||
const column = getEscapedColumnName(tableName, c.columnName);
|
||||
let columnName = c.dataType !== c.paramType ? `CAST(${column} AS ${c.paramType})`
|
||||
: `${column}`;
|
||||
return `${columnName} AS ${c.paramName}`;
|
||||
}).join(',\n ');
|
||||
}
|
||||
|
||||
export function getPredictInputColumnNames(columns: PredictColumn[], tableName: string) {
|
||||
return columns.map(c => {
|
||||
return getColumnName(tableName, c.paramName || '', c.columnName);
|
||||
}).join(',\n ');
|
||||
}
|
||||
|
||||
export function getColumnName(tableName: string, columnName: string, displayName: string) {
|
||||
const column = getEscapedColumnName(tableName, columnName);
|
||||
return columnName && columnName !== displayName ?
|
||||
`${column} AS [${utils.doubleEscapeSingleBrackets(displayName)}]` : column;
|
||||
}
|
||||
|
||||
export function getPredictColumnNames(columns: PredictColumn[], tableName: string) {
|
||||
return columns.map(c => {
|
||||
return c.paramName ? `${getEscapedColumnName(tableName, c.paramName)}`
|
||||
: `${getEscapedColumnName(tableName, c.columnName)}`;
|
||||
}).join(',\n');
|
||||
}
|
||||
|
||||
export function getOutputParameters(columns: PredictColumn[]) {
|
||||
return columns.map(c => {
|
||||
return `${c.paramName} ${c.dataType}`;
|
||||
}).join(',\n');
|
||||
}
|
||||
@@ -114,11 +114,11 @@ describe('PredictService', () => {
|
||||
const expected: TableColumn[] = [
|
||||
{
|
||||
columnName: 'c1',
|
||||
dataType: 'int'
|
||||
dataType: 'INT'
|
||||
},
|
||||
{
|
||||
columnName: 'c2',
|
||||
dataType: 'varchar'
|
||||
dataType: 'VARCHAR'
|
||||
}
|
||||
];
|
||||
const table: DatabaseTable =
|
||||
|
||||
@@ -20,13 +20,13 @@ export class ColumnsTable extends ModelViewBase implements IDataComponent<Predic
|
||||
private _parameters: PredictColumn[] = [];
|
||||
private _loader: azdata.LoadingComponent;
|
||||
private _dataTypes: string[] = [
|
||||
'bigint',
|
||||
'int',
|
||||
'smallint',
|
||||
'real',
|
||||
'float',
|
||||
'varchar(MAX)',
|
||||
'bit'
|
||||
'BIGINT',
|
||||
'INT',
|
||||
'SMALLINT',
|
||||
'REAL',
|
||||
'FLOAT',
|
||||
'VARCHAR(MAX)',
|
||||
'BIT'
|
||||
];
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user