mirror of
https://github.com/ckaczor/azuredatastudio.git
synced 2026-01-13 17:22:15 -05:00
330 lines
14 KiB
Plaintext
330 lines
14 KiB
Plaintext
{
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"name": "python3",
|
|
"display_name": "Python 3"
|
|
},
|
|
"language_info": {
|
|
"name": "python",
|
|
"version": "3.6.6",
|
|
"mimetype": "text/x-python",
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"pygments_lexer": "ipython3",
|
|
"nbconvert_exporter": "python",
|
|
"file_extension": ".py"
|
|
}
|
|
},
|
|
"nbformat_minor": 2,
|
|
"nbformat": 4,
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"\n",
|
|
" \n",
|
|
"## Deploy SQL Server 2019 Big Data Cluster on an existing Azure Kubernetes Service (AKS) cluster\n",
|
|
" \n",
|
|
"This notebook walks through the process of deploying a <a href=\"https://docs.microsoft.com/sql/big-data-cluster/big-data-cluster-overview?view=sqlallproducts-allversions\">SQL Server 2019 Big Data Cluster</a> on an existing AKS cluster.\n",
|
|
" \n",
|
|
"* Follow the instructions in the **Prerequisites** cell to install the tools if not already installed.\n",
|
|
"* The **Required information** will check and prompt you for password if it is not set in the environment variable. The password can be used to access the cluster controller, SQL Server, and Knox.\n",
|
|
"\n",
|
|
"<span style=\"color:red\"><font size=\"3\">Please press the \"Run all\" button to run the notebook</font></span>"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "82e60c1a-7acf-47ee-877f-9e85e92e11da"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Prerequisites** \n",
|
|
"Ensure the following tools are installed and added to PATH before proceeding.\n",
|
|
" \n",
|
|
"|Tools|Description|Installation|\n",
|
|
"|---|---|---|\n",
|
|
"|kubectl | Command-line tool for monitoring the underlying Kubernetes cluster | [Installation](https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-binary-using-native-package-management) |\n",
|
|
"|azdata | Command-line tool for installing and managing a Big Data Cluster |[Installation](https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-install-azdata?view=sqlallproducts-allversions) |"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "714582b9-10ee-409e-ab12-15a4825c9471"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Setup**"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "e3dd8e75-e15f-44b4-81fc-1f54d6f0b1e2"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"import pandas,sys,os,json,html,getpass,time\n",
|
|
"pandas_version = pandas.__version__.split('.')\n",
|
|
"pandas_major = int(pandas_version[0])\n",
|
|
"pandas_minor = int(pandas_version[1])\n",
|
|
"pandas_patch = int(pandas_version[2])\n",
|
|
"if not (pandas_major > 0 or (pandas_major == 0 and pandas_minor > 24) or (pandas_major == 0 and pandas_minor == 24 and pandas_patch >= 2)):\n",
|
|
" sys.exit('Please upgrade the Notebook dependency before you can proceed, you can do it by running the \"Reinstall Notebook dependencies\" command in command palette (View menu -> Command Palette…).')\n",
|
|
"def run_command(command):\n",
|
|
" print(\"Executing: \" + command)\n",
|
|
" !{command}\n",
|
|
" if _exit_code != 0:\n",
|
|
" sys.exit(f'Command execution failed with exit code: {str(_exit_code)}.\\n\\t{command}\\n')\n",
|
|
" print(f'Successfully executed: {command}')"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "d973d5b4-7f0a-4a9d-b204-a16480f3940d",
|
|
"tags": [
|
|
"hide_input"
|
|
]
|
|
},
|
|
"outputs": [],
|
|
"execution_count": null
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Set variables**\n",
|
|
"Generated by Azure Data Studio using the values collected in the Deploy Big Data Cluster wizard"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "4b266b2d-bd1b-4565-92c9-3fc146cdce6d"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Check dependencies**"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "2544648b-59c9-4ce5-a3b6-87086e214d4c"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"run_command('kubectl version --client=true')\n",
|
|
"run_command('azdata --version')"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "691671d7-3f05-406c-a183-4cff7d17f83d",
|
|
"tags": [
|
|
"hide_input"
|
|
]
|
|
},
|
|
"outputs": [],
|
|
"execution_count": null
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Required information**"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "0bb02e76-fee8-4dbc-a75b-d5b9d1b187d0"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"invoked_by_wizard = \"AZDATA_NB_VAR_BDC_ADMIN_PASSWORD\" in os.environ\n",
|
|
"if invoked_by_wizard:\n",
|
|
" mssql_password = os.environ[\"AZDATA_NB_VAR_BDC_ADMIN_PASSWORD\"]\n",
|
|
"else:\n",
|
|
" mssql_password = getpass.getpass(prompt = 'SQL Server 2019 Big Data Cluster controller password')\n",
|
|
" if mssql_password == \"\":\n",
|
|
" sys.exit(f'Password is required.')\n",
|
|
" confirm_password = getpass.getpass(prompt = 'Confirm password')\n",
|
|
" if mssql_password != confirm_password:\n",
|
|
" sys.exit(f'Passwords do not match.')\n",
|
|
"print('You can also use the controller password to access Knox and SQL Server.')"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "e7e10828-6cae-45af-8c2f-1484b6d4f9ac",
|
|
"tags": [
|
|
"hide_input"
|
|
]
|
|
},
|
|
"outputs": [],
|
|
"execution_count": null
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Set and show current context**"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "127c8042-181f-4862-a390-96e59c181d09"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"run_command(f'kubectl config use-context {mssql_cluster_context}')\n",
|
|
"run_command('kubectl config current-context')"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "7d1a03d4-1df8-48eb-bff0-0042603b95b1",
|
|
"tags": [
|
|
"hide_input"
|
|
]
|
|
},
|
|
"outputs": [],
|
|
"execution_count": null
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Create deployment configuration files**"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "138536c3-1db6-428f-9e5c-8269a02fb52e"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"mssql_target_profile = 'ads-bdc-custom-profile'\n",
|
|
"if not os.path.exists(mssql_target_profile):\n",
|
|
" os.mkdir(mssql_target_profile)\n",
|
|
"bdcJsonObj = json.loads(bdc_json)\n",
|
|
"controlJsonObj = json.loads(control_json)\n",
|
|
"bdcJsonFile = open(f'{mssql_target_profile}/bdc.json', 'w')\n",
|
|
"bdcJsonFile.write(json.dumps(bdcJsonObj, indent = 4))\n",
|
|
"bdcJsonFile.close()\n",
|
|
"controlJsonFile = open(f'{mssql_target_profile}/control.json', 'w')\n",
|
|
"controlJsonFile.write(json.dumps(controlJsonObj, indent = 4))\n",
|
|
"controlJsonFile.close()\n",
|
|
"print(f'Created deployment configuration folder: {mssql_target_profile}')"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "2ff82c8a-4bce-449c-9d91-3ac7dd272021",
|
|
"tags": [
|
|
"hide_input"
|
|
]
|
|
},
|
|
"outputs": [],
|
|
"execution_count": null
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Create SQL Server 2019 Big Data Cluster**"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "efe78cd3-ed73-4c9b-b586-fdd6c07dd37f"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"print (f'Creating SQL Server 2019 Big Data Cluster: {mssql_cluster_name} using configuration {mssql_target_profile}')\n",
|
|
"os.environ[\"ACCEPT_EULA\"] = 'yes'\n",
|
|
"os.environ[\"AZDATA_USERNAME\"] = mssql_username\n",
|
|
"os.environ[\"AZDATA_PASSWORD\"] = mssql_password\n",
|
|
"if os.name == 'nt':\n",
|
|
" print(f'If you don\\'t see output produced by azdata, you can run the following command in a terminal window to check the deployment status:\\n\\t{os.environ[\"AZDATA_NB_VAR_KUBECTL\"]} get pods -n {mssql_cluster_name} ')\n",
|
|
"run_command(f'azdata bdc create -c {mssql_target_profile}')"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "373947a1-90b9-49ee-86f4-17a4c7d4ca76",
|
|
"tags": [
|
|
"hide_input"
|
|
]
|
|
},
|
|
"outputs": [],
|
|
"execution_count": null
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Login to SQL Server 2019 Big Data Cluster**"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "4e026d39-12d4-4c80-8e30-de2b782f2110"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"run_command(f'azdata login --namespace {mssql_cluster_name}')"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "79adda27-371d-4dcb-b867-db025f8162a5",
|
|
"tags": [
|
|
"hide_input"
|
|
]
|
|
},
|
|
"outputs": [],
|
|
"execution_count": null
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Show SQL Server 2019 Big Data Cluster endpoints**"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "c1921288-ad11-40d8-9aea-127a722b3df8"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"from IPython.display import *\n",
|
|
"pandas.set_option('display.max_colwidth', -1)\n",
|
|
"cmd = f'azdata bdc endpoint list'\n",
|
|
"cmdOutput = !{cmd}\n",
|
|
"endpoints = json.loads(''.join(cmdOutput))\n",
|
|
"endpointsDataFrame = pandas.DataFrame(endpoints)\n",
|
|
"endpointsDataFrame.columns = [' '.join(word[0].upper() + word[1:] for word in columnName.split()) for columnName in endpoints[0].keys()]\n",
|
|
"display(HTML(endpointsDataFrame.to_html(index=False, render_links=True)))"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "a2202494-fd6c-4534-987d-15c403a5096f",
|
|
"tags": [
|
|
"hide_input"
|
|
]
|
|
},
|
|
"outputs": [],
|
|
"execution_count": null
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### **Connect to SQL Server Master instance in Azure Data Studio**\n",
|
|
"Click the link below to connect to the SQL Server Master instance of the SQL Server 2019 Big Data Cluster."
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "621863a2-aa61-46f4-a9d0-717f41c009ee"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"sqlEndpoints = [x for x in endpoints if x['name'] == 'sql-server-master']\n",
|
|
"if sqlEndpoints and len(sqlEndpoints) == 1:\n",
|
|
" connectionParameter = '{\"serverName\":\"' + sqlEndpoints[0]['endpoint'] + '\",\"providerName\":\"MSSQL\",\"authenticationType\":\"SqlLogin\",\"userName\":' + json.dumps(mssql_username) + ',\"password\":' + json.dumps(mssql_password) + '}'\n",
|
|
" display(HTML('<br/><a href=\"command:azdata.connect?' + html.escape(connectionParameter)+'\"><font size=\"3\">Click here to connect to SQL Server Master instance</font></a><br/>'))\n",
|
|
" display(HTML('<br/><span style=\"color:red\"><font size=\"2\">NOTE: The SQL Server password is included in this link, you may want to clear the results of this code cell before saving the notebook.</font></span>'))\n",
|
|
"else:\n",
|
|
" sys.exit('Could not find the SQL Server Master instance endpoint.')"
|
|
],
|
|
"metadata": {
|
|
"azdata_cell_guid": "48342355-9d2b-4fa6-b1aa-3bc77d434dfa",
|
|
"tags": [
|
|
"hide_input"
|
|
]
|
|
},
|
|
"outputs": [],
|
|
"execution_count": null
|
|
}
|
|
]
|
|
}
|